Bewegungs Durchschnitt Varianz
Gleitender Durchschnitt Ein technischer Auswertungsbegriff bedeutet den durchschnittlichen Preis eines Wertpapiers über einen bestimmten Zeitraum (am häufigsten 20, 30, 50, 100 und 200 Tage), um Tariftrends durch Abflachen großer Schwankungen zu ermitteln. Dies ist vielleicht die am häufigsten verwendete Variable in der technischen Analyse. Die Verschiebung der durchschnittlichen Daten wird verwendet, um Diagramme zu erstellen, die zeigen, ob ein Aktienpreis nach oben oder unten trifft. Sie können verwendet werden, um tägliche, wöchentliche oder monatliche Muster zu verfolgen. Jeder neue Tage (oder Wochen oder Monate) Zahlen werden dem Durchschnitt hinzugefügt und die ältesten Zahlen werden also fallen gelassen, der Durchschnitt bewegt sich im Laufe der Zeit. Im Algemeinen. Je kürzer der Zeitrahmen verwendet wird, desto flüchtiger werden die Preise erscheinen, so dass zum Beispiel 20 Tage gleitende durchschnittliche Linien dazu neigen, sich auf und ab zu bewegen mehr als 200 Tage gleitende durchschnittliche Linien. Bollinger Bands echte Stärke Index McClellan Oszillator Kairi Relative Index (KRI) STARC Bänder doppelter exponentieller gleitender Durchschnitt (DEMA) Copyright Kopie 2017 WebFinance, Inc. Alle Rechte vorbehalten. Unbefugte Vervielfältigung, ganz oder teilweise, ist streng verboten. Moving Average: Was es ist und wie man es kalkuliert Watch das Video oder lesen Sie den Artikel unten: Ein gleitender Durchschnitt ist eine Technik, um eine Gesamtidee der Trends in einer Daten zu bekommen Es ist ein Durchschnitt einer Teilmenge von Zahlen. Der gleitende Durchschnitt ist äußerst nützlich für die Prognose langfristiger Trends. Sie können es für jeden Zeitraum berechnen. Zum Beispiel, wenn Sie Verkaufsdaten für einen Zeitraum von zwanzig Jahren haben, können Sie einen fünfjährigen gleitenden Durchschnitt, einen vierjährigen gleitenden Durchschnitt, einen dreijährigen gleitenden Durchschnitt und so weiter berechnen. Börsenanalysten werden oft einen 50 oder 200 Tag gleitenden Durchschnitt verwenden, um ihnen zu helfen, Trends in der Börse zu sehen und (hoffentlich) Prognose, wo die Aktien geleitet werden. Ein Durchschnitt repräsentiert den Wert 8220middling8221 eines Satzes von Zahlen. Der gleitende Durchschnitt ist genau der gleiche, aber der Durchschnitt wird mehrmals für mehrere Teilmengen von Daten berechnet. Wenn Sie zum Beispiel einen zweijährigen gleitenden Durchschnitt für einen Datensatz aus den Jahren 2000, 2001, 2002 und 2003 wünschen, finden Sie Mittelwerte für die Teilmengen 20002001, 20012002 und 20022003. Bewegungsdurchschnitte werden meist geplottet und am besten visualisiert. Berechnen eines 5-Jahres-Moving-Average-Beispiels Beispielproblem: Berechnen Sie einen fünfjährigen gleitenden Durchschnitt aus dem folgenden Datensatz: (4M 6M 5M 8M 9M) 5 6.4M Der durchschnittliche Umsatz für die zweite Teilmenge von fünf Jahren (2004 8211 2008). Zentriert um 2006, ist 6.6M: (6M 5M 8M 9M 5M) 5 6.6M Der durchschnittliche Umsatz für die dritte Teilmenge von fünf Jahren (2005 8211 2009). Zentriert um 2007, ist 6.6M: (5M 8M 9M 5M 4M) 5 6.2M Weiter berechnen jeden Fünf-Jahres-Durchschnitt, bis Sie das Ende des Satzes (2009-2013) erreichen. Dies gibt Ihnen eine Reihe von Punkten (Durchschnitte), die Sie verwenden können, um ein Diagramm der gleitenden Durchschnitte zu zeichnen. Die folgende Excel-Tabelle zeigt Ihnen die gleitenden Durchschnitte, die für 2003-2012 berechnet wurden, zusammen mit einem Scatter-Diagramm der Daten: Sehen Sie sich das Video an oder lesen Sie die folgenden Schritte: Excel hat ein leistungsfähiges Add-In, das Data Analysis Toolpak (wie man die Daten lädt Analysis Toolpak), die Ihnen viele zusätzliche Optionen bietet, darunter eine automatisierte gleitende durchschnittliche Funktion. Die Funktion berechnet nicht nur den gleitenden Durchschnitt für Sie, sondern gleitet auch die Originaldaten zur gleichen Zeit. Sie sparen eine Menge Tastenanschläge. Excel 2013: Schritte Schritt 1: Klicken Sie auf die Registerkarte 8220Data8221 und klicken Sie dann auf 8220Data Analysis.8221 Schritt 2: Klicken Sie auf 8220Moving average8221 und klicken Sie dann auf 8220OK.8221 Schritt 3: Klicken Sie auf das Feld 8220Input Range8221 und wählen Sie dann Ihre Daten aus. Wenn Sie Spaltenüberschriften einfügen, stellen Sie sicher, dass Sie die Etiketten im ersten Zeilenfeld überprüfen. Schritt 4: Geben Sie ein Intervall in die Box ein. Ein Intervall ist, wie viele vorherige Punkte Sie Excel verwenden möchten, um den gleitenden Durchschnitt zu berechnen. Zum Beispiel würde 822058221 die vorherigen 5 Datenpunkte verwenden, um den Durchschnitt für jeden nachfolgenden Punkt zu berechnen. Je niedriger das Intervall, desto näher ist Ihr gleitender Durchschnitt zu Ihrem ursprünglichen Datensatz. Schritt 5: Klicken Sie in das Feld 8220Output Range8221 und wählen Sie einen Bereich auf dem Arbeitsblatt aus, in dem das Ergebnis angezeigt werden soll. Oder klicken Sie auf das Optionsfeld 8220New workheet8221. Schritt 6: Überprüfen Sie das Kontrollkästchen 8220Chart Output8221, wenn Sie ein Diagramm Ihres Datensatzes sehen möchten (falls Sie dies vergessen, können Sie jederzeit wieder hinfahren und hinzufügen oder ein Diagramm aus der Registerkarte 8220Insert8221 auswählen.8221 Schritt 7: Drücken Sie 8220OK .8221 Excel gibt die Ergebnisse in dem Bereich zurück, den Sie in Schritt 6 angegeben haben. Sehen Sie sich das Video an oder lesen Sie die folgenden Schritte aus: Beispielproblem: Berechnen Sie den dreijährigen gleitenden Durchschnitt in Excel für die folgenden Verkaufsdaten: 2003 (33M), 2004 (22M), 2005 (36M), 2006 (34M), 2007 (43M), 2007 (43M), 2009 (43M), 2010 (43M), 2012 (43M), 2013 (64M), 2013 (64M), 2013 (64M) 1: Geben Sie Ihre Daten in zwei Spalten in Excel ein. Die erste Spalte sollte das Jahr und die zweite Spalte die quantitativen Daten haben (in diesem Beispiel Problem, die Verkaufszahlen). Stellen Sie sicher, dass es keine leeren Zeilen in Ihren Zelldaten gibt : Berechnen Sie den ersten Dreijahresdurchschnitt (2003-2005) für die Daten. Für dieses Beispielproblem geben Sie 8220 (B2B3B4) 38221 in Zelle D3 ein. Berechnen des ersten Mittels Schritt 3: Ziehen Sie das Quadrat in der unteren rechten Ecke nach unten Verschieben Sie die Formel auf alle Zellen in der Spalte. Dies berechnet Mittelwerte für aufeinanderfolgende Jahre (z. B. 2004-2006, 2005-2007). Ziehen der Formel. Schritt 4: (Optional) Erstellen Sie einen Graphen. Wählen Sie alle Daten im Arbeitsblatt aus. Klicken Sie auf die Registerkarte 8220Insert8221, dann klicken Sie auf 8220Scatter, 8221 und klicken Sie dann auf 8220Scatter mit glatten Linien und Markierungen.8221 Ein Graphen Ihres gleitenden Durchschnitts wird auf dem Arbeitsblatt angezeigt. Überprüfen Sie unseren YouTube-Kanal für mehr Stats Hilfe und Tipps Moving Average: Was es ist und wie es zu berechnen ist zuletzt geändert: 8. Januar 2016 von Andale 22 Gedanken auf ldquo Moving Average: Was es ist und wie man es berechnet rdquo Dies ist Perfekt und einfach zu assimilieren. Danke für die Arbeit Das ist sehr klar und informativ. Frage: Wie rechnet man einen 4-jährigen gleitenden Durchschnitt. In welchem Jahr würde das 4-jährige gleitende Mittelpunkt auf dem Ende des zweiten Jahres (d. H. 31. Dezember) liegen. Kann ich das mittlere Einkommen verwenden, um zukünftige Erträge zu prognostizieren, weiß jemand über zentrierte Mittel, bitte sagen Sie mir, wenn jemand es weiß. Hier ist es, dass wir 5 Jahre dauern müssen, um das Mittel zu bekommen, das im Zentrum ist. Dann was ist mit den restlichen Jahren, wenn wir den Mittelwert von 20118230 haben wollen, haben wir nach 2012 noch weitere Werte, wie würden wir es dann berechnen Don8217t haben noch mehr info es wäre unmöglich, die 5-jährige MA für 2011 zu berechnen. Sie konnten einen zweijährigen gleitenden Durchschnitt aber erhalten. Hallo, Vielen Dank für das Video. Eines ist jedoch unklar. Wie man eine Prognose für die kommenden Monate macht Das Video zeigt die Prognose für die Monate, für die Daten bereits vorhanden sind. Hallo, Raw, I8217m arbeiten an der Erweiterung des Artikels um die Prognose. Der Prozess ist ein wenig komplizierter als die Verwendung von vergangenen Daten though. Werfen Sie einen Blick auf diese Duke University Artikel, die es in der Tiefe erklärt. Grüße, Stephanie danke für eine klare Erklärung. Hallo Nicht in der Lage, den Link zu den vorgeschlagenen Duke University Artikel zu finden. Anforderung, den Link erneut zu veröffentlichenExploring Die exponentiell gewichtete Moving Average Volatilität ist das häufigste Maß an Risiko, aber es kommt in mehreren Geschmacksrichtungen. In einem früheren Artikel haben wir gezeigt, wie man einfache historische Volatilität berechnet. (Um diesen Artikel zu lesen, siehe Volatilität verwenden, um zukünftiges Risiko zu beurteilen.) Wir haben Googles aktuelle Aktienkursdaten verwendet, um die tägliche Volatilität auf der Grundlage von 30 Tagen Lagerbestand zu berechnen. In diesem Artikel werden wir die einfache Volatilität verbessern und den exponentiell gewichteten gleitenden Durchschnitt (EWMA) diskutieren. Historische Vs. Implizite Volatilität Zuerst können wir diese Metrik in ein bisschen Perspektive bringen. Es gibt zwei breite Ansätze: historische und implizite (oder implizite) Volatilität. Der historische Ansatz geht davon aus, dass Vergangenheit Prolog ist, messen wir die Geschichte in der Hoffnung, dass es prädiktiv ist. Implizite Volatilität hingegen ignoriert die Geschichte, die sie für die Volatilität der Marktpreise löst. Es hofft, dass der Markt am besten weiß und dass der Marktpreis, auch wenn implizit, eine Konsensschätzung der Volatilität enthält. (Für verwandte Lesung siehe die Verwendungen und Grenzen der Volatilität.) Wenn wir uns nur auf die drei historischen Ansätze konzentrieren (links oben), haben sie zwei Schritte gemeinsam: Berechnen Sie die Reihe der periodischen Renditen Bewerben Sie ein Gewichtungsschema Zuerst haben wir Berechnen Sie die periodische Rückkehr. Das ist typischerweise eine Reihe von täglichen Renditen, bei denen jede Rückkehr in kontinuierlich zusammengesetzten Begriffen ausgedrückt wird. Für jeden Tag nehmen wir das natürliche Protokoll des Verhältnisses der Aktienkurse (d. h. der Preis heute geteilt durch den Preis gestern und so weiter). Dies führt zu einer Reihe von täglichen Renditen, von u i zu u i-m. Je nachdem wie viele Tage (m Tage) wir messen. Das bringt uns zum zweiten Schritt: Hier unterscheiden sich die drei Ansätze. In dem vorherigen Artikel (mit Volatility To Gauge Future Risk), haben wir gezeigt, dass unter ein paar akzeptablen Vereinfachungen, die einfache Varianz ist der Durchschnitt der quadrierten Renditen: Beachten Sie, dass dies summiert jede der periodischen Renditen, dann teilt diese Summe durch die Anzahl der Tage oder Beobachtungen (m). Also, es ist wirklich nur ein Durchschnitt der quadratischen periodischen Rückkehr. Setzen Sie einen anderen Weg, jede quadratische Rückkehr wird ein gleiches Gewicht gegeben. Wenn also Alpha (a) ein Gewichtungsfaktor ist (speziell 1 m), dann sieht eine einfache Varianz so aus: Die EWMA verbessert sich auf einfache Abweichung Die Schwäche dieses Ansatzes ist, dass alle Renditen das gleiche Gewicht verdienen. Gestern (sehr neuere) Rückkehr hat keinen Einfluss mehr auf die Varianz als die letzten Monate zurück. Dieses Problem wird durch die Verwendung des exponentiell gewichteten gleitenden Durchschnitts (EWMA) behoben, bei dem neuere Renditen ein größeres Gewicht auf die Varianz haben. Der exponentiell gewichtete gleitende Durchschnitt (EWMA) führt Lambda ein. Der als Glättungsparameter bezeichnet wird. Lambda muss kleiner als eins sein. Unter dieser Bedingung wird anstelle von gleichen Gewichten jede quadrierte Rendite mit einem Multiplikator wie folgt gewichtet: Zum Beispiel neigt RiskMetrics TM, ein Finanzrisikomanagement-Unternehmen, dazu, ein Lambda von 0,94 oder 94 zu verwenden. In diesem Fall ist das erste ( (1 - 0,94) (94) 0 6. Die nächste quadratische Rückkehr ist einfach ein Lambda-Vielfaches des vorherigen Gewichts in diesem Fall 6 multipliziert mit 94 5,64. Und das dritte vorherige Tagegewicht ist gleich (1-0,94) (0,94) 2 5,30. Das ist die Bedeutung von Exponential in EWMA: jedes Gewicht ist ein konstanter Multiplikator (d. h. Lambda, der kleiner als eins sein muss) des vorherigen Tagegewichts. Dies stellt eine Varianz sicher, die gewichtet oder voreingenommen auf neuere Daten ist. (Um mehr zu erfahren, schau dir das Excel-Arbeitsblatt für Googles-Volatilität an.) Der Unterschied zwischen einfacher Volatilität und EWMA für Google ist unten dargestellt. Die einfache Volatilität wirkt effektiv jede periodische Rendite um 0,196, wie in Spalte O gezeigt (wir hatten zwei Jahre täglich Kursdaten, das sind 509 tägliche Renditen und 1509 0,196). Aber beachten Sie, dass Spalte P ein Gewicht von 6, dann 5.64, dann 5.3 und so weiter zuteilt. Das ist der einzige Unterschied zwischen einfacher Varianz und EWMA. Denken Sie daran: Nachdem wir die ganze Serie (in Spalte Q) zusammengefasst haben, haben wir die Varianz, die das Quadrat der Standardabweichung ist. Wenn wir Volatilität wollen, müssen wir uns daran erinnern, die Quadratwurzel dieser Varianz zu nehmen. Was ist der Unterschied in der täglichen Volatilität zwischen der Varianz und EWMA im Googles-Fall Sein signifikant: Die einfache Varianz gab uns eine tägliche Volatilität von 2,4, aber die EWMA gab eine tägliche Volatilität von nur 1,4 (siehe die Kalkulationstabelle für Details). Anscheinend hat sich die Googles-Volatilität in jüngster Zeit niedergelassen, eine einfache Varianz könnte künstlich hoch sein. Heutige Varianz ist eine Funktion von Pior Days Variance Youll bemerken wir brauchten, um eine lange Reihe von exponentiell abnehmenden Gewichten zu berechnen. Wir werden die Mathematik hier nicht machen, aber eines der besten Features der EWMA ist, dass die ganze Serie bequem auf eine rekursive Formel reduziert: Rekursive bedeutet, dass heutige Varianzreferenzen (d. h. eine Funktion der vorherigen Tagesabweichung) ist. Sie finden diese Formel auch in der Kalkulationstabelle, und sie erzeugt genau das gleiche Ergebnis wie die Langzeitberechnung Es heißt: Die heutige Varianz (unter EWMA) ist gleichbedeutend mit der vulkanischen Varianz (gewichtet durch Lambda) plus gestern quadrierte Rückkehr (gewogen von einem Minus Lambda). Beachten Sie, wie wir nur zwei Begriffe zusammenfügen: gestern gewichtete Varianz und gestern gewichtet, quadratische Rückkehr. Dennoch ist Lambda unser Glättungsparameter. Ein höheres Lambda (z. B. RiskMetrics 94) zeigt einen langsamen Abfall in der Serie an - in relativer Hinsicht werden wir mehr Datenpunkte in der Serie haben und sie werden langsamer abfallen. Auf der anderen Seite, wenn wir das Lambda reduzieren, zeigen wir einen höheren Zerfall an: die Gewichte fallen schneller ab, und als direkte Folge des schnellen Zerfalls werden weniger Datenpunkte verwendet. (In der Kalkulationstabelle ist Lambda ein Eingang, also kannst du mit seiner Empfindlichkeit experimentieren). Zusammenfassung Volatilität ist die momentane Standardabweichung eines Bestandes und die häufigste Risikometrität. Es ist auch die Quadratwurzel der Varianz. Wir können die Abweichung historisch oder implizit (implizite Volatilität) messen. Wenn man historisch misst, ist die einfachste Methode eine einfache Varianz. Aber die Schwäche mit einfacher Abweichung ist, dass alle Renditen das gleiche Gewicht bekommen. So stehen wir vor einem klassischen Kompromiss: Wir wollen immer mehr Daten, aber je mehr Daten wir haben, desto mehr wird unsere Berechnung durch entfernte (weniger relevante) Daten verdünnt. Der exponentiell gewichtete gleitende Durchschnitt (EWMA) verbessert die einfache Varianz durch die Zuordnung von Gewichten zu den periodischen Renditen. Auf diese Weise können wir beide eine große Stichprobengröße verwenden, aber auch ein größeres Gewicht auf neuere Renditen geben. (Um ein Film-Tutorial zu diesem Thema zu sehen, besuchen Sie die Bionische Schildkröte.) Der Gesamt-Dollar-Marktwert aller einnehmen039s ausstehenden Aktien. Die Marktkapitalisierung erfolgt durch Multiplikation. Frexit kurz für quotFrench exitquot ist ein französischer Spinoff des Begriffs Brexit, der entstand, als das Vereinigte Königreich stimmte. Ein Auftrag mit einem Makler, der die Merkmale der Stop-Order mit denen einer Limit-Order kombiniert. Ein Stop-Limit-Auftrag wird. Eine Finanzierungsrunde, in der Anleger eine Aktie von einer Gesellschaft mit einer niedrigeren Bewertung erwerben als die Bewertung, Eine ökonomische Theorie der Gesamtausgaben in der Wirtschaft und ihre Auswirkungen auf die Produktion und Inflation. Keynesianische Ökonomie wurde entwickelt. Ein Bestand eines Vermögenswerts in einem Portfolio. Eine Portfolioinvestition erfolgt mit der Erwartung, eine Rendite zu erzielen. Dies.
Comments
Post a Comment